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Abstract In this paper, an H∞ output feedback con-
troller is developed for a class of time-delayed MIMO
nonlinear systems, containing backlash as an input
nonlinearity. Particularly, a state observer is proposed
to estimate unmeasurable states. The control law can
be divided into two elements: An adaptive interval
type-2 fuzzy part which approximates the uncertain
model. The second part is an H∞-based controller,
which attenuates the effects of external disturbances
and approximation errors to a prescribed level. Fur-
thermore, the Lyapunov theorem is used to prove sta-
bility of proposed controller and its robustness to ex-
ternal disturbance, hysteresis input nonlinearity, and
time varying time-delay. As an example, the designed
controller is applied to address the tracking problem
of 2-DOF robotic manipulator. Simulation results not
only verify the robust properties but also in compari-
son with an existing method reveal the ability of the
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proposed controller to exclude the effects of unknown
time varying time-delays and hysteresis input nonlin-
earity.
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1 Introduction

In the last two decades, significant developments have
been made in the theory of nonlinear feedback con-
trol. One of the traditional schemes for nonlinear
control and almost the most efficient one is feed-
back linearization method. However, in this control
method, the exact model of the system is assumed to
be known to maintain sufficient control performance.
To overcome this restrictive assumption, many control
schemes based on intelligent techniques such as adap-
tive fuzzy systems have been developed, which makes
an approximation of the unknown parts of the model
[2, 7, 23, 32].

Generally, adaptive fuzzy controllers are catego-
rized as direct and indirect approaches. In the direct
one, an adaptive fuzzy system is applied to approxi-
mate the controller [15, 30]; on the other hand, in the
indirect scheme an adaptive fuzzy system is used to
approximate only the unknown parts of the model [24,
30].
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In principle, most of uncertain nonlinear systems
might consist of noisy measurements and distur-
bances, while type-1 fuzzy approximators are proved
to have some weaknesses in modeling and approxima-
tion of such uncertainties, as they use crisp rules [18,
29]. In an interval type-2 fuzzy logic system, to over-
come this weakness, a collection of fuzzy antecedents
and consequents of the rule-base are used in exchange
for the type-1 crisp ones. Wide range of applications
of type-2 fuzzy logic systems shows that it can be used
when circumstances are too uncertain to design exact
rules, such as when training data is corrupted by noise
[1, 5, 14, 19, 20, 25].

While approximating the unknown parts of the
model, some approximation errors and bounded ex-
ternal disturbances emerge. To eliminate the effects
of these approximation errors and the bounded exter-
nal disturbances various robust methods such as vari-
able structure [21, 22] and H∞ [31] techniques have
been applied. Lin et al. [15] designed a direct MIMO
H∞ state feedback adaptive interval type-2 fuzzy con-
troller to handle the training data, which was corrupted
by noise and rule uncertainties. They proposed an H∞
tracking technique to attenuate the effect of match-
ing error and external disturbance to an arbitrary de-
sired level. Hsiao et al. [9] proposed an interval type-2
fuzzy sliding-mode controller for a class of linear and
nonlinear SISO systems. The proposed controller was
a combination of the interval type-2 fuzzy logic con-
trol with Sliding Mode Control (SMC). Moreover, Lin
et al. [16] proposed a Fuzzy Neural Network (FNN),
based on the adaptive interval type-2 fuzzy systems,
in which the modeling errors can be eliminated for a
class of SISO time-delayed nonlinear systems. How-
ever, in practice, another main issue is input nonlin-
earities, which can degrade the performance of prac-
tical system and even worse may lead to instability of
closed loop systems. The main contribution of this pa-
per is to handle the mentioned practical limitations.

Hysteresis is an interesting phenomenon that oc-
curs in a wide variety of physical systems (e.g., piezo-
electric actuators and electromagnetic devices [10,
28]). Moreover, control of such systems is still a chal-
lenging open research topic in the literature [6, 11, 26].
As a mathematical description, the output of a hystere-
sis operator at time instant t depends on the input value
at the same time (t) and some history values of input
and output. This main property of hysteresis leads to a
complicated behavior. To represent this behavior, vari-

ous models of hysteresis such as Preisach [3], Bouc-
Wen [11], Prandtl-Ishlinskii [4], and backlash [34],
have been proposed and several adaptive techniques
have been designed to address these uncertain nonlin-
ear control problems [6, 11, 26, 34].

In this paper, an observer based Indirect Adaptive
Interval Type-2 Fuzzy (IAIT2F) output feedback con-
troller is proposed for a class of MIMO hysteretic sys-
tems which contain time varying time-delay.

The main features of proposed controller are listed
as following:

– This paper employs an observer to estimate state
variables.

– Two interval type-2 fuzzy systems are applied to ap-
proximate the unknown parts of the model.

– An H∞-based controller is designed to attenuate
the approximation error and external disturbances
to a prescribed level.

– It is assumed that the control input is affected by a
backlash-like hysteresis operator.

– The controller stability is proved in the presence of
unknown time varying time-delays.

To the best of authors’ knowledge, this is the first
report of proposing a robust control technique for a
MIMO nonlinear system containing both backlash-
like hysteresis and time varying time-delayed dynam-
ics.

The rest of this paper is organized as follows:
Sect. 2 presents the problem formulation. Section 3
introduces the interval type-2 fuzzy logic systems.
State-observer and the control design are discussed in
Sect. 4. Simulation results are included in Sects. 5 and
6 provides the concluding remarks.

2 Problem formulation

Consider a class of MIMO nonlinear time-delayed
systems, described by

y
(ri )
i = fi1

(
x(t)

)+ fi2
(
x(t), x

(
t − τ(t)

))

+
m∑

j=1

g′
ij

(
x(t)

)
P [uj ](t) − di,

i = 1,2, . . . ,m (1)

where P denotes the backlash-like hysteresis opera-
tor, x = [x1, ẋ1, . . . , x

r1
1 , . . . , xm, ẋm, . . . , x

rm
m ]T ∈ R

n
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Fig. 1 Backlash-like hysteresis

is the state vector, u = [u1, . . . , um]T ∈ R
m is the in-

put, y = [y1, . . . , ym]T ∈ R
m is the output and di rep-

resents the disturbance term. Moreover, r1, . . . , rm are
the subsystems relative degrees and τ(t) is a time vary-
ing time-delay which satisfies the following relations:

τ(t) ≤ τ0, (2)

τ̇ (t) ≤ τ1 < 1. (3)

Remark 1 A backlash-like hysteresis operator ω(t) =
P [v](t) can be described by [26]

dω

dt
= α

∣∣∣∣
dv

dt

∣∣∣∣(cv − ω) + B1
du

dt
, (4)

where v ∈ R is the control input, α, c and B1 are some
arbitrary constants which satisfy c > 0 and c > B1.

The explicit solution of (4) can be derived as

ω(t) = cv(t) + z(v), (5)

where

z(v) = [w0 − cv0]e−α(v−v0)sgn(v̇)

+ e−αvsgn(v̇)

∫ u

v0

[B1 − c]eαζ sgn(v̇) dζ. (6)

The model characteristic is shown in Fig. 1 for in-
put signal v(t) = 6.5 sin(2.3t) and α = 1, c = 3.1635,
B1 = 0.345 and ω(0) = 0.

Using (5), the system dynamic in (1) can be rewrit-
ten in the following form:

y
(ri )
i = fi1

(
x(t)

)+ fi2
(
x(t), x

(
t − τ(t)

))

+
m∑

j=1

gij

(
x(t)

)
uj (t) + g′

ij

(
x(t)

)
z(uj ) − di

i = 1,2, . . . ,m (7)

where

gij = cg′
ij . (8)

It is assumed that fi1(x(t)) and gij (x(t)) can be
written as

fi1
(
x(t)

)= fi1,no

(
x(t)

)+ �fi1
(
x(t)

)

gij

(
x(t)

)= gij,no

(
x(t)

)+ �gij

(
x(t)

)
.

(9)

In the above equations, fi1,no(x(t)) and gij,no(x(t))

are the known nominal parts and �fi1(x(t)) and
�gij (x(t)) represent the uncertain nonlinearities of
fi1(x(t)) and gij (x(t)). Equation (1) can be expressed
in a normal
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = Aixi + Bi

[
fi1
(
x(t)

)

+ fi2
(
x(t), x

(
t − τ(t)

))

+ Gi

(
x(t)

)
u + G′

i

(
x(t)

)
Z(u) − di

]

yi = CT
i xi, i = 1,2, . . . ,m

(10)

in which Z(u) � [z(u1), z(u2), . . . , z(um)] and

Ai =

⎡

⎢
⎢
⎣

0 1 · · · 0
...

...
. . .

...

0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦

ri×ri

, Bi =

⎡

⎢
⎢
⎣

0
...

0
1

⎤

⎥
⎥
⎦

ri×1

,

CT
i = [1 0 · · · 0]1×ri ,

Gi

(
x(t)

)= Gi,no

(
x(t)

)+ ΔGi

(
x(t)

)
,

Gi,no

(
x(t)

)= [gi1,no, . . . , gim.no],
ΔGi

(
x(t)

)= [Δgi1, . . . ,Δgim],
G′

i

(
x(t)

)= [g′
i1, . . . , g

′
im].

Using (9) and (10), it can be concluded that (1) can
be rewritten in a compact form as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = A + B
[
Fo1
(
x(t)

)+ ΔF1
(
x(t)

)

+ F2
(
x(t), x

(
t − τ(t)

)

+ [Go

(
x(t)

)+ ΔG
(
x(t)

)]
u

+ G′(x(t)
)
Z(u) − d

]

y = CT x

(11)
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with notations, defined as

Fo1
(
x(t)

)= [f11,no

(
x(t)

)
, . . . , fm1,no

(
x(t)

)]T
,

ΔF1
(
x(t)

)= [Δf11
(
x(t)

)
, . . . ,Δfm1

(
x(t)

)]T
,

F2
(
x(t), x

(
t − τ(t)

))

= [f12
(
x(t), x

(
t − τ(t)

))
, . . . ,

fm2
(
x(t), x

(
t − τ(t)

))]T
,

Go

(
x(t)

)= [G1,no

(
x(t)

)
, . . . ,Gm,no

(
x(t)

)]T
,

ΔG
(
x(t)

)= [ΔG1
(
x(t)

)
, . . . ,ΔGm

(
x(t)

)]T
,

G′(x(t)
)= [G′

1

(
x(t)

)
, . . . ,G′

m

(
x(t)

)]T

A = diag[A1, . . . ,Am],
B = diag[B1, . . . ,Bm],
C = diag[C1, . . . ,Cm],
d = [d1, . . . , dm]T ,

and following assumptions are held.

Assumption 1 The matrix G(x(t)) is invertible.

Assumption 2 The function vector F2(x(t),

x(t − τ(t)) satisfies the following inequality

‖F2‖ ≤ α
∥∥x(t)

∥∥+ β
∥∥x
(
t − τ(t)

)∥∥ (12)

where α and β are unknown constants.

Assumption 3 Ko and Kc are chosen such that for
given positive definite matrices Q1 and Q2, there exist
positive definite matrices P1 and P2 which satisfy

(
A − BKT

C

)T
P1 + P1

(
A − BKT

C

)= −Q1 (13)

and
{

(A − KoC
T )T P2 + P2(A − KoC

T ) = −Q2

P2B = C
(14)

which concludes to the satisfaction of Hurwitz crite-
ria by (A − BKC

T ) and the SPR criteria by [A −
KoC

T ,B,C].
Consider ym = [y1m,y2m, . . . , ymm]T as the desired

reference signal and define

xd = [y1m, . . . , y
(r1−1)
1m , . . . , ymm, . . . , y(rm−1)

mm

]T
.

Fig. 2 Interval type-2 fuzzy set (IT2FS)

The control problem is to design a control law
which forces the system output to track the reference
signal ym.

Assumption 4 The desired trajectory xd is continuous
and differentiable.

Assumption 5 There exist a constant 	 for every com-
pact set U ⊂ R

n such that
∥∥G′(x(t)

)∥∥≤ 	 ∀x ∈ U. (15)

In the next section, a brief introduction on inter-
val type-2 fuzzy logic systems will be presented, and
Sect. 4 introduces the proposed control scheme.

3 Interval type-2 fuzzy logic system

Fuzzy Logic Systems (FLSs) are known as the uni-
versal approximators and have various applications in
identification and control design. A type-1 fuzzy sys-
tem consists of four major parts: fuzzifier, rule base,
inference engine, and defuzzifier. A type-2 fuzzy sys-
tem has a similar structure, but one of the major differ-
ences can be seen in the rule base part, where a type-
2 rule base has antecedents and consequents using
type-2 Fuzzy Sets (T2FS). In a T2FS, a Gaussian func-
tion with a known standard deviation is chosen, while
the mean (m) varies between m1 and m2. Therefore, a
uniform weighting is assumed to represent a footprint
of uncertainty as shaded in Fig. 2. Because of using
such a uniform weighting, we name the T2FS as an
Interval Type-2 Fuzzy Set (IT2FS).

Utilizing a rule base which consists of IT2FSs, the
output of the inference engine will also be a T2FS,
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Fig. 3 Main structure of an
interval type-2 FLS
(IT2FLS)

and, therefore, we need a type-reducer to convert it to
a type-1 fuzzy set before defuzzification can be carried
out. Figure 3 shows the main structure of an interval
type-2 FLS.

By using singleton fuzzification, the singleton in-
puts are fed into the inference engine. Combining the
fuzzy if-then rules, the inference engine maps the sin-
gleton input x = [x1, x2, . . . , xn] into a type-2 fuzzy
set as the output. A typical form of an if-then rule is

Ri = if x1 is F̃ i
1 and x2 is F̃ i

2 and · · · and xn is F̃ i
n

then G̃i (16)

where F̃ i
k s are the antecedents (k = 1,2, . . . , n) and

G̃i is the consequent of the ith rule. The sup-star
method is chosen among various inference methods
and the first step to evaluate the firing set for ith rule
is

F i(x) =
n∏

k=1

μ
F̃ i

k
(xk). (17)

As all of the F̃ i
k s are IT2FSs, so F i( x ) can be writ-

ten as F i(x) = [f i(x) f i( x )] where

f i(xi) =
n∏

k=1

μ
F̃ i

k

(xk), (18)

f
i
(xi) =

n∏

k=1

μ
F̃ i

k
(xk). (19)

The terms μ
F̃ i

k

and μ̄
F̃ i

k
are the lower and upper

membership functions, respectively (Fig. 2).
In the next step, the firing set F i(x) is combined

with the ith consequent using the product t-norm to
produce the type-2 output fuzzy set. The type-2 output
fuzzy sets are then fed into the type reduction part. The
structure of type reducing procedure is combined with
the defuzzification procedure, which uses Center of

Fig. 4 Computing right and left centroids for an IT2FS

Sets (COS) method. First, the left and right centroids
of each rule consequent is computed using Karnik–
Mendel (KM) algorithm [17] as shown in Fig. 4. Let
us call it [yl yr ].

The firing sets F i(x) = [f i(x)f̄ i(x)] computed in
inference engine are combined with the left and right
centroids of consequents, and then the defuzzified out-
put is evaluated by finding the solutions of the follow-
ing optimization problems:

yl(x) = min
∀f k∈{f kf̄ k}

(
M∑

k=1

yk
l f k(x)

/ M∑

k=1

f k(x)

)

, (20)

yr(x) = max
∀f k∈{f kf̄ k}

(
M∑

k=1

yk
r f k(x)

/ M∑

k=1

f k(x)

)

. (21)

Define f k
l (x) and f k

r (x) as the functions that are
used to solve (20) and (21), respectively, and let

ξk
l (x) = f k

l (x)

/ M∑

k=1

f k
l (x)
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and

ξk
r (x) = f k

r (x)

/ M∑

k=1

f k
r (x);

then (20) and (21) can be rewritten as

yl(x) =
M∑

k=1

yk
l f k

l (x)

/ M∑

k=1

f k
l (x)

=
M∑

k=1

yk
l ξ k

l (x)

= θT
l ξl(x) (22)

and

yr(x) =
M∑

k=1

yk
r f k

r (x)

/ M∑

k=1

f k
r (x)

=
M∑

k=1

yk
r ξk

r (x)

= θT
r ξr (x) (23)

where

ξl(x) = [ξ1
l (x) ξ2

l (x) · · · ξM
l (x)

]

and

ξr (x) = [ξ1
r (x) ξ2

r (x) · · · ξM
r (x)

]

are the fuzzy basis functions, and

θl(x) = [y1
l (x) y2

l (x) · · ·yM
l (x)

]

and

θr(x) = [y1
r (x) y2

r (x) · · ·yM
r (x)

]

are the adjustable parameters.
Finally, the crisp value is obtained by the defuzzifi-

catin procedure as

y(x) = 1

2

(
yl(x) + yr(x)

)= 1

2

(
θT
l ξl(x) + θT

r ξr (x)
)

= 1

2
θT ξ(x), (24)

where θ = [θT
l θT

r ]T and ξ = [ξT
l ξT

r ]T .

4 State-observer and controller design

In order to propose two fuzzy approximators based on
interval type-2 FLS, the unknown functions Δfi1(x(t))

and Δgij (x(t)) can be approximated as:

f̂i1
(
x(t)|θfi

)= θT
fi

ξ1
(
x(t)

)
i = 1, . . . ,m, (25)

ĝij

(
x(t)|θgij

)= θT
gij

ξ2
(
x(t)

)
i, j = 1, . . . ,m. (26)

Therefore, ΔF1(x(t)) and ΔG(x(t)) can be ap-
proximated in a compact form as

F̂1
(
x(t)|Θ1

)= Γ
(
x(t)

)T
Θ1, (27)

and

Ĝ
(
x(t)|Θ2

)= Φ
(
x(t)

)T
Θ2, (28)

where

Θ1 = [θf1, θf2 , . . . , θfm ]T ∈ Rmp,

Θ2 =
⎡

⎢
⎣

θg11 · · · θg1m

...
. . .

...

θgm1 · · · θgmm

⎤

⎥
⎦ ∈ Rmp×m,

θf1 = [θ1f1 , θ2f1 , . . . , θpf1 ] ∈ R1×P ,

θgij
= [θ1gij

, θ2gij
, . . . , θpgij

]T ∈ Rp,

Γ
(
x(t)

)= diag
[
ξ1
(
x(t)

)
, . . . , ξ1

(
x(t)

)] ∈ Rmp×m,

ϕ
(
x(t)

)= diag
[
ξ2
(
x(t)

)
, . . . , ξ2(x(t))

] ∈ Rmp×m.

Consider the adaptive state observer as

˙̂x = Ax̂ + B
[
Fo1 + F̂1

(
x̂|Θ1

)+ (Go + Ĝ
(
x̂|Θ2

))
u

− uinf − ua − us

]+ KO

(
y − CT x̂

)

+ 1

2
Bθ̂0

(
y − CT x̂

)
, (29)

ŷ = CT x̂, (30)

where u and uinf denote the fuzzy controller and ro-
bust controller, respectively. In addition, ua and us are
designed as compensation control signals. Ko is cho-
sen according to Assumption 1. Moreover, θ̂0 is up-
dated by the adaptation law

˙̂
θ0 = γ0

∥∥y − CT x̂
∥∥2

. (31)
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Applying (11) and (29), the observer error dynamic
e = x − x̂ can be calculated as

ė = (A − KOCT
)
e + B

[(
ΔF1 − F̂1

)+ (ΔG − Ĝ
)
u

+ G′(x(t)
)
Z(u) + uinf + ua + us − d

]

+ B

(
F2 − 1

2
θ̂0C

T e

)
. (32)

Definition 1 The minimum approximation error is de-
fined as

ω
Δ= ΔF1

(
x(t)

)− F̂1
(
x̂(t)|Θ∗

1

)

+ [ΔG
(
x(t)

)− Ĝ
(
x̂(t)|Θ∗

2

)]
u (33)

with Θ∗
1 and Θ∗

2 defined as the optimal coefficients,
and

Θ∗
1

Δ= arg min
Θ1∈Ω1

[
sup
∥∥F̂1
(
x̂(t)|Θ1

)− ΔF1
(
x(t)

)∥∥], (34)

Θ∗
2

Δ= arg min
Θ2∈Ω2

[
sup
∥∥Ĝ
(
x̂(t)|Θ1

)− ΔG
(
x(t)

)∥∥] (35)

where Ω1 and Ω2 are proper compact sets defined as

Ω1 = {Θ1 ∈ R
mp | ‖Θ1‖ ≤ D1

}
, (36)

Ω2 = {Θ2 ∈ R
mp×m | ‖Θ2‖ ≤ D2

}
. (37)

Definition 2 R is defined such that R−1 ≥ 2ρ2I to
guarantee the existence of solution for the Riccati
equation

(
A − KOCT

)T
P2 + P2

(
A − KOCT

)+ Q2

− 2C

(
R−1 − 1

2ρ2
I

)
CT = 0, (38)

in which ρ is a selective weight.

Using Definition 1 and notations Θ̃1 = Θ1 − Θ1
∗

and Θ̃2 = Θ2 − Θ2
∗, (32) can be rewritten as

ė = (A − KOCT
)
e + B

[
Γ T x̂(t)Θ̃1 + (ϕT x̂(t)Θ̃2u

+ G′(x(t)
)
Z(u) + uinf + ua + us + ω − d

]

+ B

(
F2 − 1

2
θ̂0C

T e

)
. (39)

Now, consider the following control and adaptation
laws:

u = [Ĝ(x̂(t)|Θ2
)+ G0

]−1
[

− F̂1
(
x̂(t)|Θ1

)

− F01 + y(r)
m + KT

C ê + uinf + ua + us

− 1

2
θ̂0
(
y − CT x̂

)]
, (40)

uinf = −R−1CT e, (41)

ua = −CT e‖Ym‖, (42)

us = KT
0 P1ê

T
, (43)

Θ̇1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ1Γ (x̂(t))CT e

if {{‖Θ1‖ ≤ D1} or
{‖Θ1‖ = D1 and
ΘT

1 Γ (x̂(t))CT e ≥ 0}}
Proj(−γ1Γ (x̂(t))CT e)

if {‖Θ1‖ = D1 and
ΘT

1 Γ (x̂(t))CT e < 0}

(44)

Θ̇2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ2ϕ(x̂(t))CT euT

if {{‖Θ1‖ ≤ D2} or
{‖|Θ2‖ = D2 and
tr(γ2ϕ(x̂(t))CT euT ΘT ) ≥ 0}}

Proj(−γ2ϕ(x̂(t))CT euT )

if {‖Θ2‖ = D2 and
tr(γ2ϕ(x̂(t))CT euT Θ2

T ) < 0}

(45)

where γ1 > 0, γ2 > 0 are selective adaptation gains,
ê = xd − x̂ is the tracking error and

Proj
(−γ1Γ

(
x̂(t)

)
CT e

)

= −γ1Γ
(
x̂(t)

)
CT e

+ ΘT
1 γ1Γ

(
x̂(t)

)
CT e

Θ1

‖Θ1‖2
, (46)

Proj
(−γ2ϕ

(
x̂(t)

)
CT euT

)

= −γ2ϕ
(
x̂(t)

)
CT euT

+ tr
(
γ2ϕ
(
x̂(t)

)
CT euT Θ2

T
) Θ2

‖Θ2‖2
. (47)

The following theorem shows that the designed
controller guarantees the stability and robustness of
closed loop system.

Theorem 1 Consider a class of MIMO systems as
shown in (1) and assume that only output variables are
measurable. If Assumptions 1, 2, 3, 4, and 5 are satis-
fied, the control and adaptation laws (40)–(45) guar-
antee the global stability and robustness of closed loop
system, i.e., x, x̂, e, ê, u ∈ L∞ and the following H∞
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criterion will be satisfied:

1

2

∫ T

0
êT

Q′
1êdt + 1

2

∫ T

0
eT Q′

2edt

≤ V (0) + ρ2

2

∫ T

0
(ω − d)T (ω − d)dt (48)

Moreover, if (ω−d) ∈ L2, then it can be concluded
that ê, e ∈ L2.

Proof From (6), it can be easily proved that [26]

lim
x→∞ z(ui) = −c − B1

α
, i = 1,2, . . . ,m, (49)

lim
x→−∞ z(ui) = c − B1

α
, i = 1,2, . . . ,m. (50)

Therefore, regarding Assumption 5, (39) can be
rewritten as

ė = (A − KOCT
)
e + B

[
Γ T
(
x̂(t)|Θ̃1

)

+ (ϕT
(
x̂(t)|Θ̃2

)
u + uinf + ua + us − d ′] (51)

in which d ′ = d − G′(x(t))Z(u) is a bounded un-
known term.

By defining ym
(r) = [y1m

r1, y2m
r2, . . . , ymm

rm ], the
following relation can be achieved:

˙̂e = Axd + By(r)
m − ˙̂x, (52)

and with regard to (52), applying (40) to (29), leads to
the tracking error dynamic

˙̂e = (A − BKT
C )ê − KOCT e. (53)

Let us define a Lyapunov function as

V = 1

2
ê
T
P1ê + 1

2
eT P2e

+ γ

1 − τ1

∫ t

t−τ(t)

(
eT (λ)e(λ) + ê

T
(λ)ê(λ)

)
dλ

+ 1

2γ0
θ̃2

0 + 1

2γ1
Θ̃T

1 Θ̃1 + 1

2γ2
tr
(
Θ̃T

2 Θ̃2
)
, (54)

in which

θ̃0 = θ0 − θ∗
0 . (55)

Time derivative of V is computed as:

V̇ ≤ 1

2
ê
T
[
P1(A − BKC) + (A − BKC)T P1

]
ê

− êP1KoC
T e

+ 1

2
eT
[(

A − KoC
T
)
P2 + P2

(
A − KoC

T
)T ]

e

+ eT P2B

[
Γ T
(
x̂(t)

)
Θ̃1 + ϕT

(
x̂(t)

)
Θ̃2u

+ (ω − d) + uinf + us + ua + F2 − 1

2
θ̂0C

T e

]

+ γ

1 − τ1

(∥∥e(t)
∥∥+ ∥∥ê(t)∥∥)

− γ
(∥∥e
(
t − τ(t)

)∥∥+ ∥∥ê(t − τ(t)
)∥∥)

+ 1

γ0

˙̂
θ0θ̂0 + 1

γ1

˙̂
Θ1

T Θ̃1

+ 1

γ2
tr
( ˙̂
Θ2

T Θ̃2
)
. (56)

Regarding Assumption 2, we have

‖F2‖ ≤ α
∥
∥x(t)

∥
∥+ β

∥
∥x
(
t − τ(t)

)∥∥

⇒ ‖F2‖ ≤ α
∥∥e(t)

∥∥+ α
∥∥ê(t)

∥∥+ α‖Ym‖
+ β

∥∥e
(
t − τ(t)

)∥∥+ β
∥∥ê
(
t − τ(t)

)∥∥

+ β‖Ym‖. (57)

Using Young’s inequality [13], it can be concluded
that

eT P2BF2 ≤ 2

γ

(
α2 + β2)∥∥eT P2B

∥∥2

+ γ
(∥∥e(t)

∥∥2 + ∥∥ê(t)∥∥2 + ∥∥e(t − τ(t)
)∥∥2

+ ∥∥ê(t − τ(t)
)∥∥2)+ ∥∥eT C

∥∥‖Ym‖ (58)

where γ is a positive constant. According to Assump-
tion 3 and by using (57), (56) can be simplified as

V̇ ≤ −1

2
ê
T
Q1ê − 1

2
eT Q2e − êP1KoC

T e

+ eT P2BΓ T
(
x̂(t)

)
Θ̃1 + eT P2BϕT

(
x̂(t)

)
Θ̃2u

+ eT P2B(ω − d) + eT P2B(uinf + us + ua)

+ γ
(∥∥e(t)

∥∥2 + ∥∥ê(t)∥∥2)

+ γ

1 − τ1

(∥∥e(t)
∥∥+ ∥∥ê(t)∥∥)

− 1

2
θ̂0e

T CCT e + ∥∥eT C
∥∥‖Ym‖
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+ 2

γ

(
α2 + β2)∥∥eT C

∥∥2

+ 1

γ0
θ̃0

˙̂
θ0 + 1

γ1

˙̂
Θ1

T Θ̃1 + 1

γ2
tr
( ˙̂
Θ2

T Θ̃2
)
. (59)

For the sake of simplicity by defining θ∗
0

Δ= 4
γ
(α2 +

β2), and using (41)–(43), (59) can be rewritten as

V̇ ≤ −1

2
ê
T

[
Q1 −

(
γ + γ

1 − τ1

)]
ê

− 1

2
eT

[
Q2 −

(
γ + γ

1 − τ1

)]
e

− eT C
1

2

(
θ̂0 − θ∗

0

)
CT e + eT P2BΓ T

(
x̂(t)

)
Θ̃1

+ eT P2BϕT
(
x̂(t)

)
Θ̃2u + ρ2

2
(ω − d)T (ω − d)

+ 1

γ0
θ̃0

˙̂
θ0 + 1

γ1

˙̂
Θ1

T Θ̃1 + 1

γ2
tr
( ˙̂
Θ2

T Θ̃2
)

− 1

2

[
1

ρ2
eT CCT e − 2

eT C

ρ
ρ(ω − d)

+ ρ2(ω − d)T (ω − d)

]
. (60)

Substituting adaptation laws (31), (44), and (45)
into (60), results in

V̇ ≤ −1

2
ê
T
Q′

1ê − 1

2
eT Q′

2e + ρ2

2
(ω − d)T (ω − d).

(61)

Integrating the above inequality from t = 0 to T

yields to

V (T ) − V (0) ≤ −1

2

∫ T

0
êT

Q′
1êdt − 1

2

∫ T

0
eT Q′

2edt

+ ρ2

2

∫ T

0
(ω − d)T (ω − d)dt (62)

as V (T ) ≥ 0, the following H∞ criterion is obtained:

1

2

∫ T

0
êT

Q′
1êdt + 1

2

∫ T

0
eT Q′

2edt

≤ V (0) + ρ2

2

∫ T

0
(ω − d)T (ω − d)dt. (63)

If (ω − d) ∈ L2, then by using Barbalat’s lemma
[12], it can be proved that the error trajectories of dy-
namical model (53) will asymptotically converges to

the origin, Therefore, the signal x(t) of system will
track the reference signal xd(t). �

Remark 2 The preceding theorem is also valid when
fi1(x(t)) and Gi(x(t)) (i = 1,2, . . . ,m) in (10) are
completely unknown. In this condition, F01 and G0

of (11) will be assumed to be equal to zero and it
can be concluded that (27) and (28) will approximate
ΔF1(x(t)) and ΔG(x(t)) of (11) completely.

Remark 3 To overcome the singularity of
[
Ĝ
(
x̂(t)|Θ2

)+ G0
]

in (40), different methods such as projection algorithm
[8], and exchanging

[
Ĝ
(
x̂(t)|Θ2

)+ G0
]−1

for its regularized inverse, have been proposed [27].

5 Simulation results

In this section, to illustrate the validity of the proposed
IAIT2F controller, tracking problem of a robotic ma-
nipulator is simulated in three subsections. In Sect. 5.1
Case 1, the tracking problem of a robotic manipulator
with 2-DOF is simulated, and the results are compared
with the type-1 fuzzy controller proposed by [24]. In
Sect. 5.2, the same control law is proved to be effective
while considering time-delayed dynamic of the manip-
ulator and the results the comparisons with the type-1
fuzzy controller of [24] is presented, also. Finally, a
backlash-like nonlinearity is added to the control in-
put of the robot in Sect. 5.3 and it will be proved that,
the proposed control law is robust to this kind of input
nonlinearities and the superiority of our method com-
pared to the proposed method in [24] is illustrated.

All the simulation results are implemented within
MATLAB software and with the step size of 0.01.

5.1 Case 1

Consider a robotic manipulator as shown in Fig. 5.
To propose a dynamic model for this robotic manip-

ulator, base on [24], following equations are written:

(
q̈1

q̈2

)
=
(

M11 M12

M21 M22

)−1 {(
u1

u2

)

−
(−hq̇2 −h(q̇1 + q̇2)

hq̇1 0

)(
q̇1

q̇2

)}
(64)
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Fig. 5 Robotic Manipulator with two DOF

where

M11 = a1 + 2a3 cos(q2) + 2a4 sin(q2),

M12 = M21 = a2 + a3 cos(q2) + a4 sin(q2),

M22 = a2,

h = a3 sin(q2) − a4 cos(q2)

and

a1 = I1 + m1lc1
2 + Ie + melce

2 + mel1
2,

a2 = Ie + melce
2,

a3 = mel1lce cos δe,

a4 = mel1lce sin δe.

To run the numerical simulation of the manipulator,
the constant parameters are chosen as

m1 = 1, me = 2,

l1 = 1, lc1 = 0.5, lce = 0.6

I1 = 0.12, Ie = 0.25, δe = π

6
.

Now, to adapt (64) to the general form proposed in
(10), consider the notations

y = [q1, q2]T , u = [u1, u2]T ,

x = [q1, q̇1,q2, q̇2
]T

,

F (x) =
(

f1(x)

f2(x)

)

(65)

=
(

M11 M12

M21 M22

)−1

×
(−hq̇2 −h(q̇1 + q̇2)

hq̇1 0

)(
q̇1

q̇2

)
,

G(x) =
(

g11 g12

g21 g22

)
=
(

M11 M12

M21 M22

)−1

.

Then the state space form of dynamic equation (65)
can be written in the form of
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = f1(x) + g11(x)u1 + g12(x)u2 + d1

ẋ3 = x4

ẋ4 = f2(x) + g21(x)u1 + g22(x)u2 + d2

y1 = x1

y2 = x3.

(66)

In following tracking simulations, the reference tra-
jectory is defined as ym = [sin(t), sin(t)]T .

To solve the Riccati equation (38) and obtain the
robust controller (41), R is computed by R = 2ρ2I

where ρ = 0.04 and adaptation gains are given as γ0 =
2, γ1 = 5 and γ2 = 15.

In order to choose the initial conditions of fuzzy
approximators, the interval type-2 fuzzy membership
functions are all designed as uncertain Gaussian func-
tions (Fig. 2), with variance σ = 2. In addition, −0.5
displacement and +0.5 displacement from following
centers, are chosen for the left and right mean of each
membership function, respectively:

θf1 = θf2 = 17×1,

θg11 = [0 −7 4 1 3 1 5]T ,

θg12 = [−3 2 6 0 3 −3 0]T ,

θg21 = [−7 −5 0 −9 0 5 1]T ,

θg22 = [−6 4 0 6 18 9 7]T .

The observer and control gain matrices are given as

KC =
⎛

⎜
⎝

0 20
0 20
5 0
5 0

⎞

⎟
⎠ , KO =

⎛

⎜
⎝

80 0
800 0

0 80
0 800

⎞

⎟
⎠ .

Finally, the initial conditions of state equations and
observer states are selected as x(0) = [1,1,0.5,0]T ,

x̂(0) = [1,0,0.5,0]T , respectively.
To illustrate system output trajectories and control

signals of the proposed method, results of proposed
controller compared to the controller of [24] are shown
in Figs. 6, 7, and 8.
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Fig. 6 Output state trajectories (y1, y2) tracking the reference
signals

Fig. 7 Tracking errors (e1, e2)

Overall, the simulations show that the proposed
method performs well and the nonlinear system
achieves the desired tracking performance in presence
of parameter uncertainties. Comparing the type-1 con-
troller of [24] with our proposed method, both con-
trollers have similar performance, while as shown in
Fig. 8, our control scheme needs less control effort in
the first second of operation.

Moreover, it should be mentioned that the main ad-
vantages of our proposed controller compared to [24]
will be illustrated in next two subsections in the pres-
ence of time-delays and backlash nonlinearities.

Fig. 8 Control signals (u1, u2)

5.2 Case 2

In this subsection, the delayed behavior of manipula-
tor links is considered. Due to inertia effect this de-
lay is unavoidable [33] and it can emerge in differ-
ent forms, with time-varying property. Here, the time-
delay is considered as 0.04 sin(t), which is added to
the 4th state (i.e., velocity of 2nd joint) of (66). There-
fore, (66) can be rewritten in the form of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = f1(x(t)) + g11(x(t))u1 + g12(x(t))u2 + d1

ẋ3(t) = x4(t)

ẋ4(t) = f2(x(t − 0.04 sin(t))) + g21(x(t))u1

+ g22(x(t))u2 + d2

y1(t) = x1(t)

y2(t) = x3(t).

(67)

In this subsection, all other parameters of control
laws are the same as Sect. 5.1. States trajectories,
tracking error signals and control inputs are shown in
Figs. 9, 10, and 11.

Based on Fig. 10, it can be seen that although
the proposed IAIT2F controller still retain its con-
trol performance, unpredicted tracking errors emerge
in the type-1 control scheme of [24]. In addition,
Fig. 11 illustrates that the proposed type-2 method
needs less control effort comparing with the type-1
method of [24].
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Fig. 9 Output state trajectories (y1, y2) tracking the reference
signals

Fig. 10 Tracking errors (e1, e2)

5.3 Case 3

Based on Theorem 1, it is proved that even in pres-
ence of hysteresis nonlinearities, system tracking per-
formance is guaranteed. Therefore, in this subsection
a backlash-like hysteresis as shown in Fig. 1 is added
to the control input. The parameters used in (4) are as
α = 0.3, c = 1, and B1 = 1.

To show the high robustness of proposed IAIT2F
controller compared to the type-1 controller of [24],
except including the backlash-like hysteresis, all other
simulation conditions are the same as in Sect. 5.2. Fig-
ures 12, 13, and 14 illustrate the results of compar-
isons.

Fig. 11 Control signals (u1, u2)

Fig. 12 Output state trajectories (y1, y2) tracking the reference
signals

As can be seen in Figs. 12 and 13, the type-1
method of [24] does not support the backlash-like hys-
teresis property of control input and it concludes to un-
desirable tracking errors. However, the proposed type-
2 method is completely robust stable in presence of
backlash-like nonlinearities and it can maintain sys-
tem robust stability with much less control effort.

5.4 Quantitative comparisons

In order to present a quantitative comparison of control
efforts and control performance among the simulation
results, Integral of Absolute Error (IAE) and Integral
of Absolute u(t) (IAU) are used as the criteria and the
results of aforementioned three simulation case stud-
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Fig. 13 Tracking errors (e1, e2)

Fig. 14 Control signals (u1, u2)

Table 1 Quantitative comparisons of proposed IAT2F con-
troller with the type-1 method of [24]

IAE1 IAE2 IAU1 IAU2

Case 1 (Type-1) 0.17 0.19 63.7 31.7

(Type-2) 0.14 0.16 61 30

Case 2 (Type-1) 0.22 0.76 66.7 32.7

(Type-2) 0.15 0.18 62.0 30.5

Case 3 (Type-1) 0.38 1.99 71.9 35.9

(Type-2) 0.17 0.21 62.6 30.8

ies for both type-1 method of [24] and our proposed
IAT2F control scheme are presented in Table 1.

The numerical comparisons of Table 1 shows that
the proposed type-2 controller is robust to time-
delayed dynamic and input nonlinearities, while the
type-1 method of [24] cannot maintain its stability
in case of input nonlinearities and time varying time-
delays.

6 Conclusion

We presented an approach for controlling a class of
MIMO nonlinear systems containing input hystere-
sis nonlinearity, time varying time-delays, model un-
certainties, and external disturbances. The proposed
method is based on H∞ robust control technique and
fuzzy logic systems. The control input comprises an
adaptive interval type-2 fuzzy system which approx-
imates the uncertain model, and an H∞-based con-
troller, which attenuates the effects of external distur-
bances and approximation errors to a prescribed level.
Moreover, a state observer was used to estimate the un-
known states. Based on Lyapunov theory, we proved
the stability of the closed-loop system to ensure that
desired robustness always occur. Finally, the effective-
ness of the designed controller was illustrated through
the simulations and results were compared with an ex-
isting method.
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